
DATA QUERY LANGUAGES

 Query languages, often known as DQLs or Data Query Languages, are computer languages that are

used to make various queries in information systems and databases.

 A query language is a language in which user requests information from the database.

Query Language

Procedural Non-procedural

 Procedural Query Language: User instructs the

system to perform a sequence of operations on the

database to compute the desired result.

For Example: Relational algebra

Structure Query language (SQL) is based on

relational algebra.

 Non-procedural Query Language: Information is

retrieved from the database without specifying the

sequence of operation to be performed. Users only

specify what information is to be retrieved.

For Example: Relational Calculus

Query by Example (QBE) is based on Relational

calculus

Relational Algebra Relational Calculus

Domain TuplePL SQL

RELATIONAL ALGEBRA

 Relational Algebra came in 1970 and was given by Edgar F. Codd (Father of DBMS). It is also known

as Procedural Query Language(PQL) as in PQL, a programmer/user has to mention two

things, "What to Do" and "How to Do".

 Relational algebra: It is a collection of operations to manipulate relations.

 Relational Algebra is a procedural query language. It consists of a set of operations that take one or

two relations a input and produce a new relation as their result.

 It specifies the operations to be performed on existing relations to derive the result relations.

 Relational Algebra are usually divided into two groups.

 Mathematical Set Operations e.g. Union, Intersection, Set Difference, Cartesian Product.

 Relational Database Operations e.g. Select, Project, Rename, Join, Assignment.

Relational Algebra

Set Operations Relational Database Set Functions

Sum

Avg

Count

Min

Max

Any

 Union
 Intersection
 Set difference
 Cartesian Product
 Division

 Select
 Rename
 Project
⋈ Join

Sum

Avg

Count

Min

Max

Any

 Union
 Intersection
 Set difference
 Cartesian Product
 Division

 Select
 Rename
 Project
⋈ Join

RELATIONAL ALGEBRA

 Select: It returns a relation containing all tuples from specified relation that satisfy a condition.

 Project: It returns a relation containing all tuples that remain in a specified relation after specified

attributes have been removed.

 Product: It returns a new relation that is an outcome of concatenation (that is chaining) of each tuple

of one relation with each tuple of another relation.

 Join: It returns a relation containing all possible tuples that are a combination of two tuples, one from

each of two specified relations such as the two tuples contributing to a given combination have a

common value for the common attributes of the two relations.

 Union: It returns a relation containing all tuples that appear in either or both of two specified

relations.

 Intersect: It returns a relation containing all tuples that appear in both of two specified relations.

 Difference: It returns a relation containing all tuples that appear in the first not in second of the two

specified relations.

 Divide: The division operator is used when we have to evaluate queries which contain the keyword

‘all’. It permits to find values in an attribute of R that have all values of S in the attribute of the same

name.

RELATIONAL ALGEBRA

RELATIONAL ALGEBRA

RELATIONAL ALGEBRA

 Select Operator (): It returns a relation containing all tuples from specified relation that satisfy a

condition. It is denoted by sigma (σ).

 Syntax: 𝜎𝑝 𝑅

σ is used for selection prediction

R is used for relation

p is used as a propositional logic formula which may use connectors like: AND (), OR (), NOT

(). These relational can use as relational operators like =, ≠, ≥, <, >, ≤.

 Examples-

 Select tuples from a relation “Books” where subject is “database”

σsubject = “database” (Books)

Select * from Books where subject=‘database’;

 Select tuples from a relation “Books” where subject is “database” and price is “450”

σsubject = “database” ∧ price = “450” (Books)

Select * from Books where subject=‘database’ and price=450;

RELATIONAL ALGEBRA

 Select tuples from a relation “Books” where subject is “database” and price is “450” or have a

publication year after 2010

σsubject = “database” ∧ price = “450” ∨ year >”2010″ (Books)

Select * from Books where subject=‘database’ and price=450 or year=2010;

Points to be remembered for Select operator

 We may use logical operators like ∧ , ∨ , ! and relational operators like = , ≠ , > , < , <= , >= with the

selection condition.

 Selection operator only selects the required tuples according to the selection condition.

 Selection operator always selects the entire tuple. It can not select a section or part of a tuple.

 Selection operator is commutative in nature i.e.

σ A ∧ B (R) = σ B ∧ A (R)

 Degree of the relation from a selection operation is same as degree of the input relation.

 The number of rows returned by a selection operation is obviously less than or equal to the number

of rows in the original table.

Thus,

Minimum Cardinality = 0, Maximum Cardinality = |R|

 Project Operator (π) is a unary operator in relational algebra that performs a projection operation.

 It displays the columns of a relation or table based on the specified attributes.

Syntax: π<attribute list>(R)

 Example-

Consider the following Student relation

πName, Age(Student) πID , Name(Student)

Select name, age from student Select ID, Name from Student

RELATIONAL ALGEBRA

ID Name Subject Age

100 Ashish Maths 19

200 Rahul Science 20

300 Naina Physics 20

400 Sameer Chemistry 21

Name Age

Ashish 19

Rahul 20

Naina 20

Sameer 21

ID Name

100 Ashish

200 Rahul

300 Naina

400 Sameer

RELATIONAL ALGEBRA

Points to be remembered for Project Operator

 The degree of output relation (number of columns present) is equal to the number of attributes

mentioned in the attribute list.

 Projection operator automatically removes all the duplicates while projecting the output relation. So,

cardinality of the original relation and output relation may or may not be same. If there are no

duplicates in the original relation, then the cardinality will remain same otherwise it will surely reduce.

 If attribute list is a super key on relation R, then we will always get the same number of tuples in the

output relation. This is because then there will be no duplicates to filter.

 Projection operator does not obey commutative property i.e.

π <list2> (π <list1> (R)) ≠ π <list1> (π <list2> (R))

 Selection Operator performs horizontal partitioning of the relation. Projection operator performs

vertical partitioning of the relation.

 There is only one difference between Project and Select operation of SQL. Projection operator does

not allow duplicates while SELECT operation allows duplicates. To avoid duplicates in SQL, we use

“distinct” keyword and write SELECT distinct. Thus, projection operator of relational algebra is

equivalent to SELECT operation of SQL.

RELATIONAL ALGEBRA

 Product: The Cartesian product is used to combine each row in one table with each row in the other

table. It is also known as a cross product. It is denoted by X.

Syntax: R X S

 Example-

Consider the following relations

EMP_ID EMP_NAME EMP_DEPT

1 Smith A

2 Harry C

3 John B

DEPT_NO DEPT_NAME

A Marketing

B Sales

C Legal

Employee

Department

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME

1 Smith A A Marketing

1 Smith A B Sales

1 Smith A C Legal

2 Harry C A Marketing

2 Harry C B Sales

2 Harry C C Legal

3 John B A Marketing

3 John B B Sales

3 John B C Legal

Employee X Department

Select Emp_name, Emp_id,dept_name From Employee, department;

Select Emp_name, Emp_id,dept_name from Employee Cross Join Department;

RELATIONAL ALGEBRA

 Union Operator (∪): It returns a relation containing all tuples that appear in either or both of two

specified relations.

Let R and S be two relations.

Then-

 R ∪ S is the set of all tuples belonging to either R or S or both.

 In R ∪ S, duplicates are automatically removed.

 Union operation is both commutative and associative.

 Example-

Consider the following two relations R and S

ID Name Subject

100 Ankit English

200 Pooja Maths

300 Komal Science

ID Name Subject

100 Ankit English

400 Kajol French

Relation R Relation S

ID Name Subject

100 Ankit English

200 Pooja Maths

300 Komal Science

400 Kajol French

Relation R ∪ S

Select * from R Union Select * from S

RELATIONAL ALGEBRA

 Intersection Operator (∩): It returns a relation containing all tuples that appear in both of two

specified relations.

Let R and S be two relations.

Then-

 R ∩ S is the set of all tuples belonging to both R and S.

 In R ∩ S, duplicates are automatically removed.

 Intersection operation is both commutative and associative.

 Example-

Consider the following two relations R and S

ID Name Subject

100 Ankit English

200 Pooja Maths

300 Komal Science

ID Name Subject

100 Ankit English

400 Kajol French

Relation R Relation S Relation R ∩ S

ID Name Subject

100 Ankit English

Select * from R Intersect Select * from S

RELATIONAL ALGEBRA

 Difference Operator (-): It returns a relation containing all tuples that appear in the first not in

second of the two specified relations.

Let R and S be two relations.

Then-

 R – S is the set of all tuples belonging to R and not to S.

 In R – S, duplicates are automatically removed.

 Difference operation is associative but not commutative.

 Example-

Consider the following two relations R and S

ID Name Subject

100 Ankit English

200 Pooja Maths

300 Komal Science

ID Name Subject

100 Ankit English

400 Kajol French

Relation R Relation S Relation R - S

ID Name Subject

200 Pooja Maths

300 Komal Science

Select * from R Minus Select * from S

RELATIONAL ALGEBRA

 Division Operation is represented by "division"(÷ or /) operator and is used in queries that involve

keywords "every", "all", etc.

Syntax : R(X,Y)/S(Y)

Here,

 R is the first relation from which data is retrieved.

 S is the second relation that will help to retrieve the data.

 X and Y are the attributes/columns present in relation. We can have multiple attributes in relation,

but keep in mind that attributes of S must be a proper subset of attributes of R.

 For each corresponding value of Y, the above notation will return us the value of X from

tuple<X,Y> which exists everywhere.

 It's a bit difficult to understand this in a theoretical way, but you will understand this with an example.

 Let's have two relations, ENROLLED and COURSE. ENROLLED consist of two attributes STUDENT_ID

and COURSE_ID. It denotes the map of students who are enrolled in given courses.

 COURSE contains the list of courses available.

 See, here attributes/columns of COURSE relation are a proper subset of attributes/columns of

ENROLLED relation. Hence Division operation can be used here.

RELATIONAL ALGEBRA

STUDENT_ID COURSE_ID

Student_1 DBMS

Student_2 DBMS

Student_1 OS

COURSE_ID

DBMS

OS

Query 1: STUDENT_ID of students who are enrolled in every course.

ENROLLED(STUDENT_ID, COURSE_ID) COURSE(COURSE_ID)

STUDENT_ID

Student_1

ENROLLED COURSE

ENROLLED COURSE

Query 2: Retrieve the name of subject that is taught in all courses.

NAME COURSE

Systems BCS

Database BCS

Database MCS

Algebra MCS

COURSE

BCS

MCS

NAME

Database

SUBJECT COURSE

SUBJECT COURSE

SUBJECT(NAME, COURSE) COURSE(COURSE)

RELATIONAL ALGEBRA

 Join Operation: It returns a relation containing all possible tuples that are a combination of two

tuples, one from each of two specified relations such as the two tuples contributing to a given

combination have a common value for the common attributes of the two relations.

 Join Operation in DBMS are binary operations that allow us to combine two or more relations.

 They are further classified into two types: Inner Join, and Outer Join.

JOIN

INNER JOIN SELF JOIN OUTER JOIN CROSS JOIN

Theta

Equi

Natural

Left Outer

Right Outer

Full Outer

 Inner Join: When we perform Inner Join, only those tuples returned that satisfy the certain

condition. It is also classified into three types: Theta Join, Equi Join and Natural Join.

 Theta Join (θ): Theta Join combines two relations using a condition. This condition is represented

by the symbol "theta"(θ). Here conditions can be inequality conditions such as >,<,>=,<=, etc.

Notation : R ⋈θ S, Where R is the first relation, S is the second relation, and θ is the condition.

Let there be a database of all the class 12th boys students in a school. Let's understand Theta Join

with the Boys and Interest tables used above :

RELATIONAL ALGEBRA

ID Name Percentage %

1 Rohan 56

2 Rohit 85

3 Amit 75

4 Ravi 79

5 Saiz 65

6 Tejan 84

7 Rishabh 75

ID Name Gender Sport

3 Amit M Cricket

23 Aman M Chess

5 Saiz M Cricket

10 Shreya F Badminton

6 Tejan M Chess

15 Sakshi F Chess

2 Rohit M Cricket

Boys Interest

RELATIONAL ALGEBRA

ID Name Percentage %

1 Rohan 56

2 Rohit 85

3 Amit 75

4 Ravi 79

5 Saiz 65

6 Tejan 84

7 Rishabh 75

ID Name Gender Sport

3 Amit M Cricket

23 Aman M Chess

5 Saiz M Cricket

10 Shreya F Badminton

6 Tejan M Chess

15 Sakshi F Chess

2 Rohit M Cricket

Theta Join -

Boys⋈(Boys.ID = Interest.ID and Interest.Sport = Chess and Boys.Percentage > 70) Interest

So the condition here is

Boys.ID = Interest.ID and Interest.Sport = Chess and Boys.Percentage > 70

so while performing join, we will have to check this condition every time two rows are joined.

ID Name Percentage Gender Sport

2 Rohit 85 M Cricket

3 Amit 75 M Cricket

6 Tejan 84 M Chess

Boys Interest

Boys ⋈θ Interest

Select * from Boys Join Interest

On Boys.ID=Interest.ID and

Interest.Sport=‘Chess’ and

Boys.Percentage>70;

RELATIONAL ALGEBRA

ID Name Percentage %

1 Rohan 56

2 Rohit 85

3 Amit 75

4 Ravi 79

5 Saiz 65

6 Tejan 84

7 Rishabh 75

ID Name Gender Sport

3 Amit M Cricket

23 Aman M Chess

5 Saiz M Cricket

10 Shreya F Badminton

6 Tejan M Chess

15 Sakshi F Chess

2 Rohit M Cricket

Equi join is same as Theta Join, but the only condition is it only uses equivalence condition while

performing join between two tables.

A ⋈(... = ...) B, where (... = ...) is the equivalence condition on any of the attributes of the joining table.

In the above example, what if we are told to find out all the students of class 12th who have interest in

chess only?

We can perform Equi join as :

Equi join: Boys ⋈(Boys.ID = Interset.ID and Interest.Sport = Chess) Interest

Result after performing Equi join:

Boys Interest

ID Name Percentage Gender Sport

6 Tejan 84 M Chess

Boys ⋈(... = ...) Interest

Select * from Boys Join Interest

On Boys.ID=Interest.ID;

RELATIONAL ALGEBRA

ID Name Percentage %

1 Rohan 56

2 Rohit 85

3 Amit 75

4 Ravi 79

5 Saiz 65

6 Tejan 84

7 Rishabh 75

ID Name Gender Sport

3 Amit M Cricket

23 Aman M Chess

5 Saiz M Cricket

10 Shreya F Badminton

6 Tejan M Chess

15 Sakshi F Chess

2 Rohit M Cricket

Natural Join is also considered a type of inner join but it does not use any comparison operator for join

condition. It joins the table only when the two tables have at least one common attribute with same

name and domain.

In the result of the Natural Join the common attribute only appears once.

It will be more clear with help of an example :

What if we are told to find all the Students of class 12th and their sports interest we can apply Natural

Join as : Boys ⋈ Interest

So when we perform Natural Join on table Boys and table Interest they both have a common attribute ID

and have the same domain. So, the Result of Natural Join will be:

Boys Interest Boys ⋈ Interest

ID Name Percentage Gender Sport

2 Rohit 85 M Cricket

3 Amit 75 M Chess

5 Saiz 65 M Cricket

6 Tejan 84 M Chess

Select * from Boys Natural Join Interest ;

RELATIONAL ALGEBRA
Outer Join

Outer Join in Relational algebra returns all the attributes of both the table depending on the condition. If

some attribute value is not present for any one of the tables it returns NULL in the respective row of the

table attribute.

It is further classified as:

Left Outer Join

Right Outer Join

Full Outer Join

Let's see how these Joins are performed.

Left Outer Join

It returns all the rows of the left table even if there is no matching row for it in the right table performing

Left Outer Join.

A ⟕ B

Let's perform Left Outer Join on table Boys and Interest and find out all the boys of class 12th and their

sports interest.

RELATIONAL ALGEBRA

ID Name Percentage %

1 Rohan 56

2 Rohit 85

3 Amit 75

4 Ravi 79

5 Saiz 65

6 Tejan 84

7 Rishabh 75

ID Name Gender Sport

3 Amit M Cricket

23 Aman M Chess

5 Saiz M Cricket

10 Shreya F Badminton

6 Tejan M Chess

15 Sakshi F Chess

2 Rohit M Cricket

If we perform Left Outer Join on table Boys and table Interest such that Boys.ID = Interest.ID . Then

Result of the Join will be:

Boys.ID Boys.Name Boys.Percentage Interest.ID Interest.Name Interest.Gender Interest.Sport

1 Rohan 56 NULL NULL NULL NULL

2 Rohit 85 2 Rohit M Cricket

3 Amit 75 3 Amit M Cricket

4 Ravi 79 NULL NULL NULL NULL

5 Saiz 65 5 Saiz M Cricket

6 Tejan 84 6 Tejan M Chess

7 Rishabh 75 NULL NULL NULL NULL

Boys ⟕ Interest

Select * from Boys Left Outer Join Interest On Boys.ID=Interest.ID;

RELATIONAL ALGEBRA
Right Outer Join

It returns all the rows of the second table even if there is no matching row for it in the first table

performing Right Outer Join.

A ⟖ B

Let's perform Right Outer Join on table Boys and Interest and find out all the boys of class 12th and their

sports interest. If we perform Right Outer Join on table Boys and table Interest such that Boys.ID =

Interest.ID . Then Result of the join will be:

RELATIONAL ALGEBRA
If we perform Right Outer Join on table Boys and table Interest such that Boys.ID = Interest.ID . Then

Result of the join will be:

Boys.ID Boys.Name Boys.Percentage Interest.ID Interest.Name Interest.Gender Interest.Sport

3 Amit 75 3 Amit M Cricket

NULL NULL NULL 23 Aman M Chess

5 Saiz 65 5 Saiz M Cricket

NULL NULL NULL 10 Shreya F Badminton

6 Tejan 84 6 Tejan M Chess

NULL NULL NULL 15 Sakshi F Chess

2 Rohit 85 2 Rohit M Cricket

Clearly, we can observe that all the rows

of the right table, i.e., table Interest is

present in the result.

ID Name Percentage %

1 Rohan 56

2 Rohit 85

3 Amit 75

4 Ravi 79

5 Saiz 65

6 Tejan 84

7 Rishabh 75

ID Name Gender Sport

3 Amit M Cricket

23 Aman M Chess

5 Saiz M Cricket

10 Shreya F Badminton

6 Tejan M Chess

15 Sakshi F Chess

2 Rohit M Cricket

Boys ⟖ Interest

Select * from Boys Right Outer Join Interest On Boys.ID=Interest.ID;

RELATIONAL ALGEBRA
Full Outer Join

It returns all the rows of the first and second Table.

A⟗ B

Boys.ID Boys.Name Boys.Percentage Interest.ID Interest.Name Interest.Gender Interest.Sport

1 Rohan 56 NULL NULL NULL NULL

2 Rohit 85 2 Rohit M Cricket

3 Amit 75 3 Amit M Cricket

4 Ravi 79 NULL NULL NULL NULL

5 Saiz 65 5 Saiz M Cricket

6 Tejan 84 6 Tejan M Chess

7 Rishabh 75 NULL NULL NULL NULL

NULL NULL NULL 23 Aman M Chess

NULL NULL NULL 10 Shreya F Badminton

NULL NULL NULL 15 Sakshi F Chess

Clearly, we can observe that all the rows of the

right table and left Table, i.e., Table B and A are

present in the result.

ID Name Percentage %

1 Rohan 56

2 Rohit 85

3 Amit 75

4 Ravi 79

5 Saiz 65

6 Tejan 84

7 Rishabh 75

ID Name Gender Sport

3 Amit M Cricket

23 Aman M Chess

5 Saiz M Cricket

10 Shreya F Badminton

6 Tejan M Chess

15 Sakshi F Chess

2 Rohit M Cricket

Boys ⟗ Interest

Select * from Boys Full Outer Join Interest On Boys.ID=Interest.ID;

RELATIONAL CALCULUS
 Relational Calculus is a non-procedural query language used in database management systems

(DBMS) to specify queries.

 Unlike relational algebra, which focuses on operations, relational calculus specifies what to

retrieve rather than how to retrieve it.

 It is based on predicate logic and consists of formulas that define the required result set without

specifying a step-by-step execution method.

 Types of Relational Calculus

Relational Calculus is mainly divided into two types:

 Tuple Relational Calculus (TRC) – Works with tuples (rows) in a relation.

 Domain Relational Calculus (DRC) – Works with domains (column values) instead of tuples.

RELATIONAL CALCULUS

Tuple Relational Calculus (TRC)

• In TRC, queries are expressed using tuple variables.

• The result is a set of tuples that satisfy a given condition.

• The general form of TRC query: {t ∣ P(t)}

where:

t is a tuple variable (representing a row in the table).

P(t) is a predicate (condition) that must be true for t to be included in the result.

Example

Find the employees who work in the "HR" department:

This retrieves all tuples t from the Employees table where the department is "HR".

Operators in TRC

• Logical Operators: AND (∧), OR (∨), NOT (¬)

• Comparison Operators: =, ≠, >, <, ≥, ≤

• Existential (∃) and Universal (∀) Quantifiers

RELATIONAL CALCULUS

Operators in TRC

• Logical Operators: AND (∧), OR (∨), NOT (¬)

• Comparison Operators: =, ≠, >, <, ≥, ≤

• Existential (∃) and Universal (∀) Quantifiers

Example with Existential Quantifier (∃)

Find employees who work in at least one department:

Here, ∃ d ensures that an employee is included only if a matching department exists.

RELATIONAL CALCULUS

Domain Relational Calculus (DRC)

• In DRC, queries are expressed in terms of column values (domains) instead of tuples.

• The result is a set of values rather than complete tuples.

• The general form of DRC query:

{(x1,x2,...,xn) ∣ P(x1,x2,...,xn)}

where:

x1,x2,...,xn represent attribute values (domains).

P(x1,x2,...,xn) is a condition that must be true for the values to be included in the result.

Example

Find the names of employees who work in the "HR" department:

This retrieves only the employee names instead of entire tuples.

RELATIONAL CALCULUS

Operators in TRC

• Logical Operators: AND (∧), OR (∨), NOT (¬)

• Comparison Operators: =, ≠, >, <, ≥, ≤

• Existential (∃) and Universal (∀) Quantifiers

• Example with Universal (∀) Quantifier

Find employees who work in every department:

Here, ∀ d ensures that an employee works in every department.

RELATIONAL CALCULUS

Feature Relational Algebra Relational Calculus

Type Procedural (specifies how to retrieve data) Declarative (specifies what to retrieve)

Operators Used
Uses operators like SELECT (σ), PROJECT

(π), JOIN (⨝), UNION (∪), etc.
Uses predicate logic, quantifiers (∃, ∀)

Flexibility Less flexible, requires sequence of operations More flexible, does not specify sequence

Implementation Easier to implement in DBMS More theoretical, used for query formulation

Relational Algebra and Relational Calculus

Relational Calculus

 Declarative Query Language: Focuses on describing the desired result rather than the retrieval

process.

 Based on Predicate Logic: Uses conditions and quantifiers to filter data.

 Supports Expressive Queries: Can handle complex queries using existential and universal

quantifiers.

 Forms the Basis for SQL: SQL is influenced by relational calculus, particularly in its use of

predicates and logical expressions.

RELATIONAL CALCULUS

Exercises on Tuple Relational Calculus (TRC) and Domain Relational Calculus (DRC)

Given Database Schema

Employee(Emp_id, Emp_Name, Dept_id, Salary)

Department(Dept_id, Dept_Name)

emp_id emp_name dept_id salary

1 Alice 10 50000

2 Bob 20 60000

3 Charlie NULL 55000

4 David 10 65000

5 Emma 30 70000

Employee Table Department Table

dept_id dept_name

10 HR

20 Finance

30 IT

40 Marketing

1. Retrieve the names of all employees who earn more than 55,000.

RELATIONAL CALCULUS
2. Find employees who work in the HR department.

3. Find the employees who do not belong to any department (i.e., dept_id is NULL).

4. Find all departments that have at least one employee.

5. Retrieve employees who work in every department.

RELATIONAL CALCULUS
6. Retrieve the department names that have no employees.

7. Find employees who work in Finance and earn more than ₹70,000.

8. Find the highest-paid employee in the company.

